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Abstract. The Niemeijer-van Leeuwen cumulant expansion for calculation of renor- 
malized interactions is carried to third order for the king model on the triangular lattice. 
Kadanoff cells containing three spins are used. Five types of pair interactions and three 
types of four-spin interactions enter the calculation. 

The renormalization equations have one non-trivial fixed point. The accuracy of the 
result for the corresponding relevant eigenvalues is, however, less than in second order. The 
idea that the cumulant expansion is an asymptotic expansion has thus been given numerical 
support. 

1. Introduction 

An attractive computational method to evaluate renormalization recursion relations 
for discrete spin systems is the cumulant expansion procedure of Niemeijer and van 
Leeuwen (1973, 1974). In this renormalization scheme one divides the spins into cells, 
each containing m spins si = *l, and associates with each cell a cell spin s‘, usually 
defined by the majority rule 

summed over the spins in the cell. The cell spins should be located on a lattice 
isomorphic with the original lattice. In the Niemeijer-van Leeuwen scheme one 
computes the effective interactions between the cell spins by dividing the spin Hamilto- 
nian H ( s )  into an intracell part H&) and an intercell part V ( s ) ,  treating the latter as a 
perturbation. This leads straightforwardly to a cumulant expansion for the cell spin 
Hamiltonian H’(s’) .  

Two basic questions naturally arise. Firstly, what is the nature of the cumulant 
expansion? In particular, does it converge? Secondly, what is the importance, if any, of 
the cell size m? In an exact renormalization calculation results should be independent 
of m, but the question is which choice of m is to be preferred in an approximate 
calculation of the cumulant expansion to second order, say. 

* Permanent address: Departamento de Fisica-C-3, Universidad Autonoma de Madrid, Canto Blanco 
(Madrid), Spain. 
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The answers to these questions are not known, although it has been speculated 
(Niemeijer and van Leeuwen 1975, Hsu eta/  1975) that the cumulant expansion yields 
merely an asymptotic series, such that one can terminate the expansion at an optimal 
order om. Moreover, the tentative idea is that both om and the accuracy of the result 
increase with increasing cell size m. In this paper we present numerical evidence in 
support of this conjecture. 

According to the conjecture the lack of convergence should be most easily detected 
for small cells, and we choose to work with three-spin cells on the triangular lattice (as in 
the original Niemeijer-van Leeuwen calculation). The additional advantage is that one 
can compare with recent results on the same lattice with seven-spin cells (Sudbo and 
Hemmer 1976). In that calculation, as well as in the present one, the cumulant 
expansion is carried to third order. 

2. The renormalized coupling constants 

The renormalized Hamiltonian is generated by the cumulant expansion 

H'W) = ln(exp v>, = ( W O  + $(( v2)0 - ( v>3 + %( v3)0 - 3( v2>0( v>o + 2( v>3 + O( V) .  

The averages ( )o are with respect to the Boltzmann factor exp(Ho), and are averages 
over all spin configurations {s} compatible with a given cell-spin configuration { s r } .  A 
factor ( -p)  is included in the Hamiltonian and in the coupling constants. We assume 
zero magnetic field. A constant term has been omitted in (2). We refer to Niemeijer 
and van Leeuwen (1974) for details of the procedure. 

The eight coupling constants required to generate the full third-order recursion 
relations are shown in figure 1.  They are classified as first-, second- and third-order 
quantities according to the lowest order of the cumulant expansion in which they are 
generated from a pure nearest-neighbour pair spin interaction. 

The evaluation of ( 2 )  to third order yields the following non-linear equations for the 
renormalized couplings KA between the cell spins: 

(2) 

K:l= 2a2K21 + 3a2K22 + 2a2K23 +(4a2+4a2b -8u")K;l 

+2a2K2,+(ac + 2 ~ ' b ) K " ~  +(2ac + 4 ~ z ~ b ) K ~ ~ + 2 a ~ b K , ~  

+ ( 8 ~  + 1 6 ~  '6 - 24a4)K21K22 + ( 1 2 ~ '  + 1 2 ~  '6 - 24a4)K2lK23 

+(22a2/3+4ac +4a2b + 14u2b2-40a4- 104a"b +344a6/3)K& (3u) 

K42 = U 'K23 + (U + 7~ '6 - 8a4)K;1 + 2a 'K24 + 3U 'K25 + 2~ 'bK42 

+ ( 8 ~ '  + 16a2b - 2 4 ~ " ) K ~ ~  K22 + ( 6 ~  + 1 0 d b  - 16a4)K2l K23 

+(4a2 +24a2b +20a2b2 - 32a" -64a4b +48a6)K;1 (3b) 
K& = (4a ' b  - 4a4)Ki1 + 2a 'KZ4 + (4a2 + 8u '6 - 12a4)K21K22 

+(4a2+ 12a2b - l6a4)KZ1KZ3 

+ ( 2 ~ ~ + 2 0 ~ ~ b  +26a2b2-24a4- 72a"b +48a6)K:1 

K;4 = (4a2b -4a4)K21K23 + (20a2b2 + 4 d b  -4a4-44u "b + 24a6)Ki1 

Kh5 = ( 8 ~ ~ 6 ' -  16a4b + 8u6)K;1 
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Figure 1. First, second, and third order interactions in zero field. 

Kkl = 2a4K42 + (2a3c -4a‘- 30a4b +32a6)Ki1 

Kkz = (3a3c - 19a4b + 16a6)Ki1 

Kk3 = (5a3c -2la‘b + 16a6)Ki1. 

We have introduced the following abbreviations for averages of one, two or three spins 
within one cell with cell spin s‘: 

b = ( S ~ S ~ ) ~  = 2a - 1 

c = ( S ~ S ~ S ~ ) ~ / S ’  = 3a - 2. 

The second-order terms in (3) agree with the Niemeijer-van Leeuwen expressions. 

3. Fixed point and eigenvalue for three-spin cells 

The renormalization equations (3) have just one non-trivial fixed point, namely 

KZl= 0.520559; K:z = -0.038370; K;3 = -0.051555; 

K &  = 0*000310; K$s = 0.000820; K:1= -0.019164; (7) 
K:z 0.018077 ; K23 = 0.007888. 

Linearizing the renormalization equations around this fixed point we find merely 
one relevant eigenvalue A, of the transformation matrix 

Tmn = (dKk/aK,,),=,*. (8) 

The value of A, is given in table 1 together with the results of first and second order 
cumulant expansion (Niemeijer and van Leeuwen 1974). The exact value of the 
eigenvalue is A, = J3.  The Widom homogeneity exponent 

y ,  = In AJln 43 
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Table 1. Thermal eigenvalue and homogeneity index from successive orders in the 
cumulant expansion. 

Three-spin cells Seven-spin cells 

Approximation A i  Yr AI YI 

First order 1.624 0.883 2.444 0.919 
Second order 1.773 1.042 2.986 1.124 
Third order 1.877 1.146 2.838 1.072 
Exact 1.732 1 .ooo 2.646 1.000 

is also recorded in table 1, together with corresponding results for seven-spin cells 
(Sudb0 and Hemmer 1976). 

The intersection of the critical surface in the eight-dimensional parameter space 
with the KZ1 axis yields the inverse critical temperature K;l  for the model with only 
nearest-neighbour interactions. The results can be compared with the known exact 
value K ; l  = a  In 3 = 0.2747 . . . . The numerical values for the present three-spin cell 
transformation are recorded in table 2, together with the corresponding results for 
seven-spin cells (Sudb0 and Hemmer 1976). 

Table 2. Critical coupling constant for the model with nearest-neighbour interactions. 

Three-spin cells Seven-spin cells 

Approximation K& G I  

First order 0.3356 0.3003 
Second order 0.2575 0.2647 
Third order 0.3009 0.2752 
Exact 0.2747 0,2747 

4. Discussion 

One sees from the result given for three-spin cells in table 1 that inclusion of the third 
order on the contrary does not improve the result for the thermal eigenvalue. The same 
is true for the critical temperature calculation recorded in table 2. The second-order 
critical coupling constant is off by 6.3%, while the third-order value deviates 9.5% from 
the exact value. (With the larger cell the corresponding deviations are merely 3.6% and 
0.2% .) 

Although based upon scanty evidence, this supports the conjecture that the cumul- 
ant expansion is an asymptotic expansion, with an optimal order o3 for three-spin cells 
equal to 2. 

For the larger cell, on the other hand, is it clear from the result given in table 1 that 
0733. Thus the conjecture that om is increasing with m has been given numerical 
support. The rationale behind this part of the conjecture is of course that the intercell 
part V, i.e. the perturbation, constitutes a smaller part of the Hamiltonian when the cell 
size is large. 
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